初一到初三数学知识点(初一数学上册知识点归纳)

初一到初三数学知识点归纳总结

很多同学都是谈数学色变,觉得数学很难学好。其实只要找到正确的数学学习方法你也可以轻松学习数学。以下是我分享给大家的初一到初三数学知识点归纳,希望可以帮到你! 初一到初三数学知识点归纳有理数的加法运算:同号相加一边倒;异号相加"大"减"小",符号跟着大的跑;绝对值相等"零"正好。[注]"大"减"小"是指绝对值的大小。 合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。 去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。 一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。 恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。 完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。 因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。 "代入"口诀:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大) 单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。 一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。 一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。 一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。 分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。 分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。 最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。 特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。 象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。 平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。 对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。 自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。 函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面的口诀"左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了"。 一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。 二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。 反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。 巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。 三角函数的增减性:正增余减特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀"123,321,三九二十七"既可。 平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。对角线,是个宝,互相平分"跑不了",对角相等也有用,"两组对角"才能成。 梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在"△"现;延长两腰交一点,"△"中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。 添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。 圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。 圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。 正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前。 经过分点做切线,切线相交n个点。N个交点做顶点,外切正n边形便出现。正n边形很美观,它有内接,外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便。正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单。 函数学习口决:正比例函数是直线,图象一定过圆点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。 反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换。 二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,b的食物中毒结全算,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。初中数学复习方法课前要“预、做、复” 每堂新课之前,做到先预习,特别要把难点或不懂之处用彩笔划出,以便上课时更加注意。每节内容后面的练习自己可以先做一做,做到看懂70%的新内容,会做80%的练习题。 每节新内容学完后,要按照课本内容,从易到难,从简到繁,一步一步地把学过的知识进行比较复习,对概念、定理、公式做出归纳、总结,加深对知识的理解,最好能把课本上的例题自己做一遍。对课本上的概念、定理、公式推理一遍,以形成对知识的整体认识。 课上要“听、记、练” 怎样才能提高听课的效率呢? 首先,做好课前的准备。充分做好课前的准备工作是听好课基础。一般情况下,应做好三个方面的准备: 第一,知识准备。每一门学科,都有其严密的知识体系,尤其是数学,其严密性更强,它好像一条锁链,一环套一环,环环紧扣,前面的知识没有掌握好,后面的知识就难以理解。所以上课前要复习旧课并预习新课,了解新旧知识的联系,明确新课的学习要求。如果旧的知识接不上,就要想办法补上。 第二,物质准备。课前要准备好课本、文具在内的课堂上必需学习用品,如:课堂笔记本,草稿本,三角板,圆规,量角器等。 第三,精神准备。提前入座,稳定情绪,并可利用这短暂的时间作知识回顾,上一节学了什么?这堂课将学什么?这样有助于一上课就进入“角色”。 其次,听讲全神贯注。部分同学为什么学习成绩上不去?为什么课后做作业感到费力?其中一个重要的原因就是上课不专心听讲。有的同学上课静不下来,注意力容易分散,这就需要专门的训练。 再次,要主动获取知识。主动听课是指积极配合老师的每一个教学环节,主动思考。例如,老师在黑板上写出一道例题,有些同学等待教师讲解,而有些同学则不然,他立即开动脑筋,抢在老师讲解前分析问题的条件和结论,并考虑解题思路,久而久之,就能提高自己的解题能力和思维能力。 最后,还要做好课堂笔记。课堂上以听为主,以记为辅。记笔记求精求快,而不求多。课堂上主要记教材以外的补充内容、学习中的难点、老师的归纳小结及解题的方法技巧。课后再对笔记进行适当整理;就能将课堂所获得的知识纳入自己的知识仓库。 课后要“思、问、集” 课后作业一定要养成独立思考的习惯,多从不同的方法、角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。同时,还应多树立数学解题思想。如:方程的思想、函数的思想、数形结合的思想、整体的思想、分类的思想等常用方法;对于难题,要多问几个为什么,如改变条件、添加条件、结论与条件互换,原结论还成立吗?另外,对于自己作业、试卷中出现的错误,最好能准备一本错题集,以便今后复习中使用,做到绝不出现第二次类似错误。初中数学学习建议1课前课上及课后 先来说说大家都熟知的一些学习方法,也是一些基本的方法,这些方法确实是一些好的方法,主要就是看大家能不能真正的做好这些事情。下面让我们来具体地看看。 课前:课前需要预习,预习需要我们去把接下来要上的内容整体上看一遍,然后找出其中的重点与难点,以及自己无法很好理解的内容,分别做上不同的标记,以便在上课的时候针对自己的问题去认真听课与重点理解。 课上:在上课的时候不太可能整节课都集中精神,这时候就更显现出我们课前预习的重要性了。我们需要在上课的时候集中精神听讲预习中所遇到的重点与难点,尽量地在课堂上去理解吸收。同时也可以看看老师讲的重点与自己课前预习所确定的重点是否一致。另外,对于老师重点讲解的东西需要做下相应的笔记,以便之后复习用。 课后:课后的复习一定要及时跟上,不仅当天要对学习的内容进行复习,在之后的几天里也应该要花一定的时间去复习,同时可以跟上一些练习进行检测与巩固。如果复习的时候发现还有不明白的地方,一定要及时的去询问老师或是其他同学,将其弄懂。 课前课上及课后三个步骤环环相扣,一定要把每一步都做到位。 2提高作业效率 现在很多学生以及家长都反应说作业太多,来不及或是没有时间去完成作业,导致学习成绩不佳。但是我们应该要想一想,我们大家的时间都是一样多的,而大家的作业也是一样多的,为什么有的人能够完成,而有的人不能够完成呢。这里就要说到学习的效率了,有的学生能够先复习,然后再做作业,做作业的时候集中注意力,能够很快速地完成。而有的学生就与之相反了,首先可能课上就没有听好,然后做作业之前也没有进行复习,而是直接开始做的,同时也可能是做作业的时候不够集中注意力,即使作业不是很多,也需要花很长的时间去完成。 其实这都是因为一种不好的学习习惯,导致了做作业的效率不高。那么我们应该如何去提高做作业的效率呢?下面我给出了几个建议,供大家参考一下。 一、要有端正的写作业的态度。 从思想上要认真对待,如果养成懒散的习惯了,以后问题就会更多,今日不努力,明日就会失去更多,再要改善起来,就更难了。因为一个好习惯的养成是要下决心去坚持的,虽然由于以前的习惯不好或者遗留问题太多导致在坚持的过程中会容易产生抵触的情绪,甚至有时还容易放弃,但是要知道,一旦好习惯养成之后,原来所经常遇到的问题就会越来越少,成绩也自然提高了起来。 二、注意力一定要集中。 不要在写作业的时候干其他的事或想其他事,一心不能二用。尽快地反作业做完了才能够去做别的事情。 三、要学会总结。 如果在看到题目后能很快反映出这题目所需要的知识点,那么做题速度就会提高,在做题之后也要总结一下思路。多总结一下会发现很多题目都有规律可循,这样可以起到事半功倍的效果,以后再碰到类似问题时,就可以很轻松了。 四、营造一个良好的写作业环境。 孩子写作业时尽量保持安静,书桌上除了放书、学习用品等之外,不要放其他的东西,以免分散他们的注意力。家长也不要过度的唠叨和训斥,要多鼓励孩子。 3加强计算能力 计算一直是数学的一个核心内容,几乎每一个数学问题都需要通过计算。那么,计算的准确率就显得尤为重要了。想要提高数学成绩,计算的准确率是一定要提高的。那么如何提高计算的准确率呢?这里我也同样给出了几条建议。 一、强化学生的有意注意和良好的计算习惯 (1)仔细审题的习惯。拿到题目后认真审题,看清题目的要求,想明白过程中应该注意哪些问题。 (2)细心检查的习惯。先从思路上检查一遍看是否有遗漏,再将答案代回原来的问题验算。若为计算题则仔细检查每一个步骤。 (3)认真书写的习惯。书写要干净整洁,这样能使自己在做题时看清题目,避免错误的发生。 二、强化口算能力 任何计算都是以口算为基础的,口算能力的高低,直接影响到学生其它运算能力的提高。要提高口算能力,首先要抓好口算的基本训练,所以应当经常性的进行一些口算的练习。 三、速算巧算 平时在做计算的时候要注意运算技巧地运用,加快运算速度,特别是在分数计算的部分,有时候数字比较大比较多,通分将会很困难,这时可能把分母写成乘积的形式将是一种更好的选择。 四、强化估算能力 很多的问题,特别是应用题,当看到问题后就能够大概地去估计一下结果大概会是一个什么范围的数,有了这种估计能力之后,有时候发生计算错误就能够一下子看出来。所以在做题之前我们也可以估计一下答案的范围,如果算得的答案不在这个范围,那就需要我们去检查了。 五、合理利用一些数的性质 比如说奇数乘以偶数一定是一个偶数,各位数字和是3的倍数的数一定能被3整除等等性质,都可以帮助我们对运算是否准确做一些辅助的判断。 猜你喜欢: 1. 初一数学上册知识点汇总整理 2. 初一数学上册知识点复习梳理归纳 3. 初一数学知识点整理 4. 初一数学上册知识点汇总归纳 5. 初中数学知识点总结大全
初一到初三数学知识点归纳总结

初一到初三数学知识点总结归纳

2020年的中考就要到了,同学们可以利用这个寒假系统的复习一下初中数学的重要知识点,接下来给大家分享初一到初三数学知识点,供参考。 数轴 1.数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。 数轴的三要素:原点,单位长度,正方向。 2.数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。) 3.用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。 概率 1.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。 2.互斥事件:不可能同时发生的两个事件叫做互斥事件。 3.对立事件:即必有一个发生的互斥事件叫做对立事件。 4.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。 5.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。 解一元二次方程的步骤 1.配方法的步骤: 先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式。 2.分解因式法的步骤: 把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式。 3.公式法 就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。 平行线 1.在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。 2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 3.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 4.判定两条直线平行的方法: (1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。 (2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。 (3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。 5.平行线的性质 (1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。 (2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。 (3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。 全等三角形 1.经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。 2.三角形全等的判定 (1)SSS(边边边) 三边对应相等的三角形是全等三角形。 (2)SAS(边角边) 两边及其夹角对应相等的三角形是全等三角形。 (3)ASA(角边角) 两角及其夹边对应相等的三角形全等。 (4)AAS(角角边) 两角及其一角的对边对应相等的三角形全等。 (5)RHS(直角、斜边、边) 在一对直角三角形中,斜边及另一条直角边相等。 3.角平分线 (1)从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。 (2)性质 ①角平分线分得的两个角相等,都等于该角的一半。 ②角平分线上的点到角的两边的距离相等。 有理数 1.定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。 2.数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。 3.相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。 4.绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。 5.有理数的加减法 同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。 6.有理数的乘法 两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数与0相乘,积为0.例:0×1=0 7.有理数的除法 除以一个不为0的数,等于乘这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。0除 以任何一个不为0的数,都得0。 8.有理数的乘方 求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当aⁿ看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。
初一到初三数学知识点总结归纳

初一到初三数学知识点梳理总结

为了方便大家系统的复习初一到初三重要的数学知识点,我做了一个总结,希望对大家复习有帮助。 有理数 1.定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。 2.数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。 3.相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。 4.绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。 5.有理数的加减法 同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。 6.有理数的乘法 两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数与0相乘,积为0.例:0×1=0 7.有理数的除法 除以一个不为0的数,等于乘这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。0除 以任何一个不为0的数,都得0。 8.有理数的乘方 求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当aⁿ看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。 相反数和绝对值 1.相反数:只有符号不同的两个数互为相反数,0的相反数是0。在数轴上位于原点两侧且离原点距离相等。 2.绝对值的几何意义:一个数所对应的点离原点的距离叫做该数的绝对值。 3.绝对值的代数定义:(1)一个正数的绝对值是它本身;(2)一个负数数的绝对值是它的相反数;(3)0的绝对值是0;(4)|a|大于或者等于0。 4.比较两个数的大小关系 在数轴上表示有理数,它们从左到右的顺序,就是从大到小的顺序,即左边的数小于右边的数。由此可知:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小。 角的相关知识点 1.角:角是由两条有公共端点的射线组成的几何对象。 2.角的度量单位:度、分、秒 3.顶点:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点 4.角的比较: (1)角可以看成是由一条射线绕着他的端点旋转而成的。 (2)平角和周角:一条射线绕着他的端点旋转,当始边和终边成一条直线时,所成的角叫平角。当它又和始边重合的时候,所成的角角周角。平角等于108度,周角等于360度,直角等于90度。 (3)平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 5.余角和补角: (1)余角:如果两个角的和是90度,那么称这两个角“互为余角”,简称“互余”。 性质:等角的余角相等。 (2)补角:如果两个角的和是180度,那么称这两个角“互为补角”,简称“互补”。 性质:等角的补角相等。 数轴的知识点 1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。) 2.数轴的三要素:原点、正方向、单位长度。 3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。 4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。 一元一次方程 1.只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。 2.等式的性质 性质一:等式两边加(或减)同一个数(或式子),结果仍相等。 性质二:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。 3.解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等。 ⑴具体做法:方程两边都乘各分母的最小公倍数。 ⑵依据:等式性质2。 ⑶注意事项:①分子打上括号;②不含分母的项也要乘。 因式分解 1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化。 2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”。 3.公因式的确定:系数的最大公约数·相同因式的最低次幂。 注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3。 4.因式分解的公式: (1)平方差公式:a2-b2=(a+b)(a-b); (2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2。 5.因式分解的注意事项: (1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理; (6)因式分解的最后结果要求相同因式写成乘方的形式。 6.因式分解的解题技巧: (1)换位整理,加括号或去括号整理; (2)提负号; (3)全变号; (4)换元; (5)配方; (6)把相同的式子看作整体; (7)灵活分组; (8)提取分数系数; (9)展开部分括号或全部括号; (10)拆项或补项。 一次函数的图像及性质 1.在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。 2.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。 3.正比例函数的图像总是过原点。 4.k,b与函数图像所在象限的关系: 当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。 当k>0,b>0时,直线通过一、二、三象限; 当k>0,b<0时,直线通过一、三、四象限; 当k<0,b>0时,直线通过一、二、四象限; 当k<0,b<0时,直线通过二、三、四象限; 当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
初一到初三数学知识点梳理总结

初一到初三数学重点知识点总结

很多同学都需要整理数学知识点,我整理了一些初中数学重点知识,大家一起来看看吧。 数学三角函数的中考考点 1.正弦定理 在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R,直径为D。则有:a/sinA=b/sinB=c/sinC=2r=D(r为外接圆半径,D为直径)。 一个三角形中,各边和所对角的正弦之比相等,且该比值等于该三角形外接圆的直径(半径的2倍)长度。 2.余弦定理 对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。 对于边长为a、b、c而相应角为A、B、C的三角形则有: ①a²=b²+c²-2bc·cosA; ②b²=a²+c²-2ac·cosB; ③c²=a²+b²-2ab·cosC。 也可表示为: ①cosC=(a²+b²-c²)/2ab; ②cosB=(a²+c²-b²)/2ac; ③cosA=(c²+b²-a²)/2bc。 3.正切定理 在三角形中,任意两条边的和除以第一条边减第二条边的差所得的商,等于这两条边对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。 对于边长为a,b和c而相应角为A,B和C的三角形,有: ①(a-b)/(a+b)=[tan(A-B)/2]/[tan(A+B)/2]; ②(b-c)/(b+c)=[tan(B-C)/2]/[tan(B+C)/2]; ③(c-a)/(c+a)=[tan(C-A)/2]/[tan(C+A)/2]。 基本定理 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 15、定理三角形两边的和大于第三边 16、推论三角形两边的差小于第三边 17、三角形内角和定理三角形三个内角的和等于180° 18、推论1直角三角形的两个锐角互余 19、推论2三角形的一个外角等于和它不相邻的两个内角的和 20、推论3三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等 22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 25、边边边公理(SSS)有三边对应相等的两个三角形全等 26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1在角的平分线上的点到这个角的两边的距离相等 28、定理2到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33、推论3等边三角形的各角都相等,并且每一个角都等于60° 34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、推论1三个角都相等的三角形是等边三角形 36、推论2有一个角等于60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半 39、定理线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、定理1关于某条直线对称的两个图形是全等形 43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形 48、定理四边形的内角和等于360° 49、四边形的外角和等于360° 50、多边形内角和定理n边形的内角的和等于(n-2)×180° 一次函数的图像及性质 1.在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。 2.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。 3.正比例函数的图像总是过原点。 4.k,b与函数图像所在象限的关系: 当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。 当k>0,b>0时,直线通过一、二、三象限; 当k>0,b<0时,直线通过一、三、四象限; 当k<0,b>0时,直线通过一、二、四象限; 当k<0,b<0时,直线通过二、三、四象限; 当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 以上就是一些数学知识点的相关信息,希望对大家有所帮助。
初一到初三数学重点知识点总结

初一到初三的数学知识归纳是什么?

初一到初三的数学知识归纳: 初中数学知识点。 (一)概率。 1、随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。 2、互斥事件:不可能同时发生的两个事件叫做互斥事件。 3、对立事件:即必有一个发生的互斥事件叫做对立事件。 4、必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。 5、不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。 (二)有理数。 1、定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。 2、相反数:指绝对值相等,正负号相反的两个数互为相反数。 3、绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。 4、有理数的加减法:同号相加,把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。 5、有理数的乘法:两数相乘,同号得正,异号得负,并把绝对值相乘。 6、有理数的除法:两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不为0的数,都得0。 (三)整式。 1、是单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。 2、整式的加减运算时,如果遇到括号先去掉括号,再合并同类项。 (四)一元一次方程。 1、定义:只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。 2、解一元一次方程的步骤: ①去分母:把系数化成整数。 ②去括号。 ③移项:把等式一边的某项变号后移到另一边。 ④合并同类项。 ⑤系数化为1。 (五)实数。 1、平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根。 2、如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。
初一到初三的数学知识归纳是什么?