逻辑思维训练500题 谁有逻辑思维训练500题+答案 谢谢!
第一篇 排除法 001.帽子的颜色【初级】有3顶红帽子和2顶白帽子。将其中的3顶帽子分别戴在A、B、C三人头上。这三人每人都只能看见其他两人头上的帽子,但看不见自己头上戴的帽子,并且也不知道剩余的2顶帽子的颜色。问A:“你戴的是什么颜色的帽子?”A回答说:“不知道。”接着,又以同样的问题问B。B想了想之后,也回答说:“不知道。”最后问C。c回答说:“我知道我戴的帽子是什么颜色了。”当然,c是在听了A、B的回答之后才作出回答的。试问:C戴的是什么颜色的帽子?002.五顶帽子【初级】有3顶红帽子和2顶白帽子。现在将其中3顶给排成一列纵队的3个人每人戴上1顶,每个人都只能看到自己前面的人的帽子,而看不到自己和自己后面的人的帽子。同时,3个人也不知道剩下的2顶帽子的颜色(但他们都知道他们3人的帽子是从3顶红帽子、2顶白帽子中取出的)。先问站在最后边的人:“你知道你戴的帽子是什么颜色吗?”最后边的人回答:“不知道。”接着又让中间的人说出自己戴的帽子的颜色。中间的人虽然听到了后边的人的回答,但仍然说不出自己戴的是什么颜色的帽子。听了他们两人的回答后,前面的人没等问,便答出了自己帽子的颜色。你知道为什么吗?他的帽子又是什么颜色的呢?003.只有我知道【初级】老师让6名学生围坐成一圈,另让1名学生坐在中央,并拿出7顶帽子,其中4顶白色,3顶黑色。然后蒙住7名学生的眼睛,并给坐在中央的学生戴一顶帽子,而只解开坐在圈上的6名学生的眼罩。这时,由于坐在中央的学生的阻挡,每个人只能看到5个人的帽子。老师说:“现在,你们7人猜一猜自己的头上戴的帽子的颜色。”大家静静地思索了好大一会儿。最后,坐在中央的、被蒙住双眼的学生举手说:“我猜到了。” 问:中央的被蒙住双眼的学生带的是什么颜色的帽子?他是怎样猜到的?
邮箱啊邮箱。
邮箱啊邮箱。

数学思维训练方法有哪些
平时生活学习中,家长们应对孩子多进行思维训练,因为可以带给孩子以下诸多好处。那么应该如何进行思维训练呢?下面我为你整理数学思维训练方法,希望能帮到你。 进行思维训练的10个方法 思维训练方法1.脑力激荡法 脑力激荡法(Brainstorming):脑力激荡法是最为人所熟悉的创意思维策略,该方法法是由Osborn早于1937年所倡导,此法强调集体思考的方法,着重互相激发思考,鼓励参加者于指定时间内,构想出大量的意念,并从中引发新颖的构思。脑力激荡法虽然主要以团体方式进行,但也可于个人思考问题和探索解决方法时,运用此法激发思考。 该法的基本原理是:只专心提出构想而不加以评价;不局限思考的空间,鼓励想出越多主意越好。此后的改良式脑力激荡法是指运用脑力激荡法的精神或原则,在团体中激发参加者的创意。 思维训练方法2.三三两两讨论法 此法可归纳为每两人或三人自由成组,在三分钟中限时内,就讨论的主题,互相交流意见及分享。三分钟后,再回到团体中作汇报。 思维训练方法3.六六讨论法 六六讨论法(Phillips66 Technique): 六六讨论法是以脑力激荡法作基础的团体式讨论法。方法是将大团体分为六人一组,只进行六分钟的小组讨论,每人一分钟。然后再回到大团体中分享及做最终的评估。 思维训练方法4.逆向思考法 是可获得创造性构想的一种思考方法,此技法可分为七类,如能充分加以运用,创造性就可加倍提高了。 思维训练方法5.分合法 (Synectics) Gordon 于1961年在《分合法:创造能力的发展(Synectics: thedevelopment ofcreativity)》一书中指出的一套团体问题解决的方法。此法主要是将原不相同亦无关联的元素加以整合,产生新的意念/面貌。分合法利用模拟与隐喻的作用,协助思考者分析问题以产生各种不同的观点。 思维训练方法6.属性列举法 属性列举法:(Attribute Listing Technique) 是由Crawford于1954年提倡的一种著名的创意思维策略。此法强调使用者在创造的过程中观察和分析事物或问题的特性或属性,然后针对每项特性提出改良或改变的构想。 思维训练方法7.希望点列举法 希望点列举法:这是一种不断的提出“希望”、“怎样才能更好”等等的理想和愿望,进而探求解决问题和改善对策的技法。 思维训练方法8.优缺点列举法 优点列举法:这是一种逐一列出事物优点的方法,进而探求解决问题和改善对策。缺点列举法:这是一种不断的针对一项事物,检讨此一事物的各种缺点及缺漏,并进而探求解决问题和改善对策的技法。 思维训练方法9.检核表法 检核表法:(Checklist Method) 检核表法是在考虑某一个问题时,先制成一览表,对每项检核 方向逐一进行检查,以避免有所遗漏。此法可用来训练员工思考周密,及有助构想出新的意念。 思维训练方法10.七何检讨法 七何检讨法:(5W2H检讨法) 是“六何检讨法”的延伸,此法之优点及提示讨论者从不同的层面去思巧和解法问题。所谓5W,是指:为何(Why)、何事(What)、何人(Who)、何时(When)、 何地(Where);2H指:如何(How)、何价(How Much)。 暑期数学思维训练的3个好处 暑期数学思维训练的好处——启发孩子的数学思维 3-12岁是孩子思维能力发展的重要阶段,更深入的说,也是孩子智力发展的重要阶段。所以,这一时期如果能够让孩子接受到数学思维训练,会让初中或者高中的学习都变得较为轻松。并且,暑假时间充足,可以有针对性的、集中给孩子进行思维训练,这样在下一个学年开学的时候,孩子的学习能力就会有一个质的提升。学习起来也就不觉得困难了。 暑期数学思维训练的好处——变被动学习为主动学习 如果孩子的思维发展不好,那么面对数学题,他们只会觉得一团乱麻,难以明白其中的原理。而当孩子的思维能力得到提升以后,在他们看到题目时,就能发现其中设计的巧妙和解题的思路所在。这会让孩子对数学产生极大的兴趣,把它当做一个挑战,当问题解答成功时,会有很大的成就感。 并且,精锐教育旗下的至慧学堂采用的还不是死板的数学思维训练方法,而是采用了哈佛商学院所用的哈佛案例教学法,这样让孩子在情境中学习,不但学习效率高,还能激发孩子对数学学习的兴趣。 暑期数学思维训练的好处——补缺补漏、弯道超越 暑期对孩子的学习来说是一个很好的缓冲期。这一阶段家长要注意的,就是将孩子以往存在的数学学习难点给解决掉,并且再让孩子的数学能力有进一步的提升,能更好地迎接下一年级更难的数学知识。 而家长会说,如果单就书本知识学习的话,传统的补习班不也行吗?其实不然,一方面是因为题海战术治标不治本,孩子会了这一题,但是却不会做下一题,并且它对孩子的思维能力发展并没有好处,反而很容易让孩子形成定势思维。而到了下一年级,孩子在数学学习上的领悟能力依旧很低,慢慢的成绩又会落下来。 以上就是关于暑期数学思维训练的好处的介绍了,在至慧学堂中,有为3-6岁孩子开设的数学巧思乐课程、为7-12岁孩子开设的数学培优课程以及为7-11岁孩子开设的数学精英强化课程。想要了解的家长可以免费咨询至慧学堂,同时也可以在线试听课程。 思维训练相关文章: 1. 思维训练 2. 逻辑思维训练题目及答案 3. 逻辑思维训练500题 4. 逆向思维训练 5. 自闭症孩子的教育思考:浅谈思维训练

儿童思维训练题库
思维能力是一个人的核心能力。孩子的思维是后天形成的,水平不断提高。孩子思维处于直观行动思维向具体形象思维的发展过程中,抽象逻辑思维已经开始萌芽,具备了进行思维训练的基础。下面就是我给大家带来的25道儿童思维训练题库,希望大家喜欢! 儿童思维训练题库 1.小丽走进教室,看见教室里只有7名同学,那么现在教室里有几名同学? 2.一只猫吃一只老鼠,用5分钟吃完;5只猫同时吃5只同样大小的老鼠,要几分钟吃完? 3.小康同样的钱,可以买3支铅笔和2本练习本,是铅笔贵还是练习本贵? 4."六一"儿童节,妈妈给小华、小明、小刚买了3种不同的礼品,分别是:魔方、智力拼图、洋娃娃。现在知道小刚拿不是智力拼图,小明拿的不是洋娃娃,也不是智力拼图,想一想,他们每人拿的是什么礼物。 5.小丽走进教室,看见教室里只有7名同学,那么现在教室里有几名同学? 6.桌上有10支点燃的蜡烛。风从窗户吹进来,吹灭了2支蜡烛,过了一会儿,又有一支蜡烛被吹灭。把窗关起来,再没有蜡烛被吹灭,第二天早上还剩几支蜡烛? 8.一只猫吃一只老鼠,用5分钟吃完;5只猫同志吃6只同样大小的老鼠,要几分钟吃完? 9.小朋友,张开手,五个手指人人有,手指之间几个"空",请你仔细看一看? 10.小朋友在一段马路的一边种树。每隔1米种一棵,共种了11棵,问这段马路有多长? 11.把一根木头锯成3段,要锯几次?如果每锯一次用3钟,一共要锯多少分钟? 12.小林家住在三楼,他每上一层楼要走14级台阶,小林从一楼走到三楼要走多少级台阶? 13.时钟5点打5下,一共需要4秒钟。问中午12钟打12下需要几秒钟? 14.有13名学生,他们的身高两两不等。如下图所示排成了"十字形"。现知甲同学是横行8位同学中个子最矫者,乙是纵列6位学生中个子者,请你想一想,甲的个子高还是乙的个子高? 15.下图中有多少条线段? 16.下面图形中有几个角? 17.下图中共有多少个三角形? 18.下图中有多少个正方形? 19.数一数图中共有多少个三角形? 20.下面的加法竖式中,不同的字代表不同的数字,相同的字母代表相同的数字,请你恢复这个算式。 21.在下面的算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,请你恢复这个算式。 22.今有一个两位数,在其右边添写上数码3,成为一个三位数,又知这个三位数比原来的两位数大372,求原来的两位数是多少? 23.66个车轮,50个车架问安装多少辆车子后,车轮和车架一样多? 24.找出下面数列的规律,并填空。 1,2,4,7,11,□,□,29,37。 25.一列数按"632405676324056763240567632……"排列,问第40个数是( ),第60个数是( )。 儿童思维训练题库二 1、天色已晚,妈妈叫小明打开房间电灯,可淘气的小明一连拉了9下开关。请你说说这时灯是亮还是不亮?拉20下呢?拉100下呢? 答:9下亮,20下不亮,100下不亮。(单数亮、双数不亮) 2、小青有9本故事书,小新有7本连环画,小青用3本故事书换小新2本连环画,现在小青、小新各有几本书? 答:小青9-3+2=8(本),小新7-2+3=8(本) 3、小敏到商店买文具用品。她用所带钱的一半买了1支铅笔,剩下的,一半买了1支圆珠笔,还剩下1元钱。小敏原来有多少钱? 答:1+1=2(元),2+2=4(元) 4、欢欢和乐乐去买练习本,欢欢买了4本,乐乐买了6本,欢欢比乐乐少花1元钱,一本练习本多少钱? 答:1元=5角+5角,所以一本练习本是5角钱 5、李老师带有60元钱,正好买一个足球和两个排球。如果只买两个排球,还剩28元。一个足球多少钱?一个排球多少钱? 答:足球=28元,2个排球=60-28=32(元),32=16+16,所以一个排球是16(元) 6、15个小朋友排成一队,小东的前面有9人,小东后面有几人? 答:15-9-1=5(人) 7、14个同学站成一队做操,从前面数张兵是第6个,从后数他是第几个? 答:14-6+1=9(个) 8、13只鸡排成一队,其中有只大公鸡,从前面数,它站在第8,它的后面有几只鸡? 答:13-8=5(只) 9、13只鸡排成一队,其中有只大公鸡,它的前面有8只鸡,它的后面有几只鸡? 13-8-1=4(只) 10、有两篮苹果,第一篮25个,第二篮19个,从第一篮中拿几个放入第二篮,两篮的苹果数相等? 答:25-19=6(个)6=3+3,从第一篮拿出3个放到第二篮,两框苹果数相等。 11、小力有18张画片,送给小龙3张后,两人的画片同样多。小龙原来有几张画片? 答:18-3-3=12(张) 12、小华给小方8枚邮票后,两人的邮票枚数同样多,小华原来比小方多几枚邮票? 答:8+8=16(枚) 13、大林比小林多做15道口算题,小明比小林多做6道口算题,大林比小明多做几道口算题? 答:15-6=9(道) 14、小花今年6岁,爸爸对小花说:“你长到10岁的时候,我正好40岁。”爸爸今年多少岁? 答:40-10+6=36(岁) 15、动物园里有只长颈鹿,它的年龄数是用的两位数减去最小的两位数,再减去的一位数后所得的数。这只长颈鹿有多少岁? 答:99-10-9=80(岁) 儿童思维训练题库相关文章: 1. 适合大班孩子的简单的思维能力提升训练 2. 儿童逻辑思维训练方法 3. 儿童数理思维能力小训练 4. 经典逻辑思维训练题25题带答案 5. 逻辑思维训练500题及答案 6. 关于幼儿思维训练的方法 7. 逻辑思维训练500题 8. 4~5岁儿童逆向思维训练游戏 9. 3岁小孩子培养思维能力的小训练 10. 儿童脑筋急转弯题库大全

经典的逻辑思维训练题及答案
思维训练的时候做点训练题,效果是非常不错的。你在生活中是个喜欢做逻辑思维训练题的人吗?下面我就为大家就介绍一些思维训练题吧,欢迎大家参考和学习。 经典的逻辑思维训练题一、某岛上有三个奇怪的村庄,甲村的人从来不说谎,乙村的人从来不讲实话,丙村的人一句实话跟着一句谎话,一句谎话跟着一句实话,并且开始的一句是实话还是谎话没有准。有一天,张三、李四和王五到岛上观光,碰到两个导游,他们都说对方是丙村的。 当这两个导游做裁判,看张三、李四和王五三人谁抛石头抛得远时,他们给出不同的结论:一个说:“张三第一、李四第二、王五第三”另一个说:“王五第一、张三第二、李四第三,”那么两个导游各是哪村的?三人名次如何?(写出具体推理过程) 二、有张三,李四两个人。张三只说假话,不说真话;李四只说真话,不说假话。他们回答问题时只通过点头和摇头来表示,并不说话。有一天,一个学者面对两条路X和Y,其中一条通向首都,另一条通向小镇。他面前站着张三和李四其中的一个人,但他不知道是张三还是李四。也不知道“点头” 是表示“是”,还是表示“否”。他只须问一个问题,就可以确定哪条路通向首都。经典逻辑思维训练题答案这个问题应该如何问?(写出具体推理过程)第一题;两导游的构成只能是:甲村+甲村;乙村+乙村;丙村+丙村;甲村+乙村;甲村+丙村;乙村+丙村;六种结构 1.很容易排除:甲村+甲村;甲村+乙村;乙村+丙村 2.若两人都是乙村的,他们说的都是假话,则三人排名:李,王,张; 3.若两人都是丙村的,他们第一句说的是真话,则后面说的是假话,所以三人排名为:李,王,张;4.若为甲村+丙村结构,丙第一次说了谎话,第二次应该说实话,甲是一直说实话的,所以两人对三人名次的答案应该相同,结果是不相同,所以不为甲村+丙村结构;所以,三人排名很容易确定,分别为:李,王,张两导游可能都来自丙村,也可能都来自乙村。 若三人的真实排名是李第一,王第二,张第三,则两导游只能判断可能来自丙村,也可能来自乙村;若真实排名与推断不符合,则两导游来自丙村。第二题:很简单他只要站在任何一条路上,对着其中一个人问:“如果我问他(另一个人),这条路不通往首都,他会怎么回答?”若两人都都摇头,就往这条路走,如果都点头,就往另外一条走。6道逻辑思维训练题推荐训练逻辑思维训练题1.哪个数最小? 有A、B、C、D四个数,它们分别有以下关系:A、B之和大于C、D之和,A、D之和大于B、C之和,B、D之和大于A、C之和。请问,你可以从这些条件中知道这四个数中那个数最小吗? 训练逻辑思维训练题2.做题。 老师给全班60个学生布置了两道作业题,其中有40个人做对了第一道题,有31个人做对了第二道题,有4个人两道题都做错了。那么,你能算出来两道题都做对的人数吗? 训练逻辑思维训练题3.解题 弟弟让姐姐帮他解答一道数学题,一个两位数乘以5,所得的积的结果是一个三位数,且这个三位数的个位与百位数字的和恰好等于十位上的数字。姐姐看了以后,心里很是着急,觉得自己摸不到头绪,你能帮姐姐得到这首题的答案吗? 训练逻辑思维训练题4.头巾的颜色。 有一队人一起去郊游,这些人中,他们有的人戴的是蓝色的头巾,有的人戴的是黄色的头巾。在一个戴蓝色头巾的人看来,蓝色头巾与黄色头巾一样多,而戴黄色头巾的人看来,蓝色头巾比黄色头巾要多一倍。那么,到底有几个人戴蓝色头巾,几个人黄色头巾? 训练逻辑思维训练题5.分果冻。 小红的妈妈买了许多果冻,这些果冻一共有48个,小红的妈妈对小红说:如果你能把这些果冻分成4份,并且使第一份加3,第二份减3,第三份乘3,第四份除3所得的结果一致,那你就可以吃这些果冻了。小红想了好长时间,终于把这个问题想出来了,聪明的你知道怎么分吗? 训练逻辑思维训练题6.买书。 小红和小丽一块到新华书店去买书,两个人都想买《综合习题》这本书,但钱都不够,小红缺少4.9元,小丽缺少0.1元,用两个人合起来的钱买一本,但是钱仍然不够,那么,这本书的价格是多少呢?训练逻辑思维训练题答案1.C最小。由题意可得(1)A、B>C、D;(2)A、D>B、C;(3)B、D>A、C。由(1)+(2)得知A>C,由(1)+(3)可得知B>C,由(2)+(3)得知D>C,所以,C最小。 2.根据题干所提的我们先假设,两位数是AB,三位数是CDE,则AB*5=CDE。 第一步:已知CDE能被5整除,可得出个位为0或5。 第二步:若后一位数E=0,由于E+C=D,所以C=D。 第三步:又根据题意可得CDE/5的商为两位数,所以百位小于5。 第四步:因为上一步得出了C=D,因此,当C=1,2,3,4时,D=1,2,3,4,CDE=110,220,330,440。 第五步:若E=5,当C=1,2,3,4时,D=6,7,8,9,CDE=165,275,385,495。 所以,这道题应该有8个这样的数。 3.两道题都做对的有15个人。40+31(604)=15。 4. 由于每个人都看不到自己头上戴的头巾,所以,戴蓝色头巾的人看来是一样多,说明蓝色头巾比黄色头巾多一个,设黄色头巾有X个,那么,蓝色头巾就有X+1个。而每一个戴黄色头巾的人看来,蓝色头巾比黄色头巾多一倍。也就是说2(X1)=X+1,解得X=3。所以,蓝色头巾有4个,黄色头巾有3个。 5.四份分别是12,6,27,3。设这四份果冻都为X,则第一份为X+3,第二份为X3,第三份为3X,第四份为X/3,总和为48,求得X=9。这样就知道每一份各是多少了。 6.这本书的价格是4.9元。小红口袋里就没有钱,小丽口袋里有4.8元。 逻辑思维相关训练题: 1. 逻辑思维训练500题 2. 经典逻辑思维训练题(25题,带答案) 3. 逻辑思维题 4. 逻辑思维的智力训练题 5. 训练逻辑思维能力题目集锦

逻辑思维训练题有哪些
思维训练的时候做点训练题,效果是非常不错的。你在生活中是个喜欢做逻辑思维训练题的人吗?下面我为你整理经典的逻辑思维训练题,希望能帮到你。 经典的逻辑思维训练题 一、某岛上有三个奇怪的村庄,甲村的人从来不说谎,乙村的人从来不讲实话,丙村的人一句实话跟着一句谎话,一句谎话跟着一句实话,并且开始的一句是实话还是谎话没有准。有一天,张三、李四和王五到岛上观光,碰到两个导游,他们都说对方是丙村的。 当这两个导游做裁判,看张三、李四和王五三人谁抛石头抛得远时,他们给出不同的结论:一个说:“张三第一、李四第二、王五第三”另一个说:“王五第一、张三第二、李四第三,”那么两个导游各是哪村的?三人名次如何?(写出具体推理过程) 二、有张三,李四两个人。张三只说假话,不说真话;李四只说真话,不说假话。他们回答问题时只通过点头和摇头来表示,并不说话。有一天,一个学者面对两条路X和Y,其中一条通向首都,另一条通向小镇。他面前站着张三和李四其中的一个人,但他不知道是张三还是李四。也不知道“点头” 是表示“是”,还是表示“否”。他只须问一个问题,就可以确定哪条路通向首都。 经典逻辑思维训练题答案 这个问题应该如何问?(写出具体推理过程)第一题;两导游的构成只能是:甲村+甲村;乙村+乙村;丙村+丙村;甲村+乙村;甲村+丙村;乙村+丙村;六种结构 1.很容易排除:甲村+甲村;甲村+乙村;乙村+丙村 2.若两人都是乙村的,他们说的都是假话,则三人排名:李,王,张; 3.若两人都是丙村的,他们第一句说的是真话,则后面说的是假话,所以三人排名为:李,王,张;4.若为甲村+丙村结构,丙第一次说了谎话,第二次应该说实话,甲是一直说实话的,所以两人对三人名次的答案应该相同,结果是不相同,所以不为甲村+丙村结构;所以,三人排名很容易确定,分别为:李,王,张两导游可能都来自丙村,也可能都来自乙村。 若三人的真实排名是李第一,王第二,张第三,则两导游只能判断可能来自丙村,也可能来自乙村;若真实排名与推断不符合,则两导游来自丙村。第二题:很简单他只要站在任何一条路上,对着其中一个人问:“如果我问他(另一个人),这条路不通往首都,他会怎么回答?”若两人都都摇头,就往这条路走,如果都点头,就往另外一条走。 12类逻辑思维训练题 一、和差问题 已知两数的和与差,求这两个数。 【口诀】: 和加上差,越加越大; 除以2,便是大的; 和减去差,越减越小; 除以2,便是小的。 例:已知两数和是10,差是2,求这两个数。 按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。 二、鸡兔同笼问题 【口诀】: 假设全是鸡,假设全是兔。 多了几只脚,少了几只足? 除以脚的差,便是鸡兔数。 例:鸡免同笼,有头36 ,有脚120,求鸡兔数。 求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24 求鸡时,假设全是兔,则鸡数=(4X36-120)/(4-2)=12 三、浓度问题 (1)加水稀释 【口诀】: 加水先求糖,糖完求糖水。 糖水减糖水,便是加糖量。 例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%? 加水先求糖,原来含糖为:20X15%=3(千克) 糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克) 糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克) (2)加糖浓化 【口诀】: 加糖先求水,水完求糖水。 糖水减糖水,求出便解题。 例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%? 加糖先求水,原来含水为:20X(1-15%)=17(千克) 水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克) 糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克) 四、路程问题 (1)相遇问题 【口诀】: 相遇那一刻,路程全走过。 除以速度和,就把时间得。 例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇? 相遇那一刻,路程全走过。即甲乙走过的路程和恰好是两地的距离120千米。 除以速度和,就把时间得。即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时) (2)追及问题 【口诀】: 慢鸟要先飞,快的随后追。 先走的路程,除以速度差, 时间就求对。 例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上? 先走的路程,为3X2=6(千米) 速度的差,为6-3=3(千米/小时)。 所以追上的时间为:6/3=2(小时)。 五、和比问题 已知整体求部分。 【口诀】: 家要众人合,分家有原则。 分母比数和,分子自己的。 和乘以比例,就是该得的。 例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数。 分母比数和,即分母为:2+3+4=9; 分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。 和乘以比例,所以甲数为27X2/9=6,乙数为:27X3/9=9,丙数为:27X4/9=12。 六、差比问题(差倍问题) 【口诀】: 我的比你多,倍数是因果。 分子实际差,分母倍数差。 商是一倍的, 乘以各自的倍数, 两数便可求得。 例:甲数比乙数大12,甲:乙=7:4,求两数。 先求一倍的量,12/(7-4)=4, 所以甲数为:4X7=28,乙数为:4X4=16。 七、工程问题 【口诀】: 工程总量设为1, 1除以时间就是工作效率。 单独做时工作效率是自己的, 一齐做时工作效率是众人的效率和。 1减去已经做的便是没有做的, 没有做的除以工作效率就是结果。 例:一项工程,甲单独做4天完成,乙单独做6天完成。甲乙同时做2天后,由乙单独做,几天完成? [1-(1/6+1/4)X2]/(1/6)=1(天) 八、植树问题 【口诀】: 植树多少颗, 要问路如何? 直的减去1, 圆的是结果。 例1:在一条长为120米的马路上植树,间距为4米,植树多少颗? 路是直的。所以植树120/4-1=29(颗)。 例2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少颗? 路是圆的,所以植树120/4=30(颗)。 九、盈亏问题 【口诀】: 全盈全亏,大的减去小的; 一盈一亏,盈亏加在一起。 除以分配的差, 结果就是分配的东西或者是人。 例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子? 一盈一亏,则公式为:(9+7)/(10-8)=8(人),相应桃子为8X10-9=71(个) 例2:士兵背子弹。每人45发则多680发;每人50发则多200发,多少士兵多少子弹? 全盈问题。大的减去小的,则公式为:(680-200)/(50-45)=96(人)则子弹为96X50+200=5000(发)。 例3:学生发书。每人10本则差90本;每人8 本则差8本,多少学生多少书? 全亏问题。大的减去小的。则公式为:(90-8)/(10-8)=41(人),相应书为41X10-90=320(本) 十、牛吃草问题 【口诀】: 每牛每天的吃草量假设是份数1, A头B天的吃草量算出是几? M头N天的吃草量又是几? 大的减去小的,除以二者对应的天数的差值, 结果就是草的生长速率。 原有的草量依此反推。 公式就是A头B天的吃草量减去B天乘以草的生长速率。 将未知吃草量的牛分为两个部分: 一小部分先吃新草,个数就是草的比率; 有的草量除以剩余的牛数就将需要的天数求知。 例:整个牧场上草长得一样密,一样快。27头牛6天可以把草吃完;23头牛9天也可以把草吃完。问21头多少天把草吃完。 每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207; 大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天) 结果就是草的生长速率。所以草的生长速率是45/3=15(牛/天); 原有的草量依此反推。 公式就是A头B天的吃草量减去B天乘以草的生长速率。 所以原有的草量=27X6-6X15=72(牛/天)。 将未知吃草量的牛分为两个部分: 一小部分先吃新草,个数就是草的比率; 这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草; 剩下的21-15=6去吃原有的草, 所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天) 十一、年龄问题 【口诀】: 岁差不会变,同时相加减。 岁数一改变,倍数也改变。 抓住这三点,一切都简单。 例1:小军今年8 岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍? 岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。 已知差及倍数,转化为差比问题。 26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。 例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁? 岁差不会变,今年的岁数差13-9=4几年后也不会改变。 几年后岁数和是40,岁数差是4,转化为和差问题。 则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。 十二、余数问题 【口诀】: 余数有(N-1)个, 最小的是1,最大的是(N-1)。 周期性变化时, 不要看商, 只要看余。 例:如果时钟现在表示的时间是18点整,那么分针旋转1990圈后是几点钟? 分针旋转一圈是1小时,旋转24圈就是时针转1圈,也就是时针回到原位。1980/24的余数是22,所以相当于分针向前旋转22个圈,分针向前旋转22个圈相当于时针向前走22个小时,时针向前走22小时,也相当于向后24-22=2个小时,即相当于时针向后拔了2小时。即时针相当于是18-2=16(点)。 练习题及答案解析 1、有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个? 由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。 解:总个数: (21+20+19)÷2=30(个) 白球:30-21=9(个) 红球:30-20=10(个) 黄球:30-19=11(个) 答:白球有9个,红球有10个,黄球有11个。 2、水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨? 由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。 解:4.8×10÷(12-10)=24(吨) 答:原计划每天生产水泥24吨。 3、父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁? 分析知:5年前父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,再加上5就是今年儿子的年龄。 解:(45-5)÷4+5 =10+5 =15(岁) 答:今年儿子15岁。 4、学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人? 想:参加语文竞赛的36人中有参加数学竞赛的,同样参加数学竞赛的38人中也有参加语文竞赛的,如果把两者加起来,那么既参加语文竞赛又参加数学竞赛的人数就统计了两次,所以将参加语文竞赛的人数加上参加数学竞赛的人数再加上一科也没参加的人数减去全班人数就是双科都参加的人数。 解:36+38+5-59=20(人) 答:双科都参加的有20人。 5、有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油? 想:“如果从甲桶倒入乙桶18千克,两桶油就一样重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。 解:18×2÷(4-1)=12(千克) 12×4=48(千克) 答:原来甲桶有油48千克,乙桶有油12千克。 6、光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答、 分析:根据题意,20题全部答对得100分,答错一题将失去(5+3)分,而不答仅失去5分。小丽共失去(100-79)分。再根据(100-79)÷8=2(题),分析答对、答错和没答的题数。 解:(5×20-75)÷8=2(题) 20-2-1=17(题) 答:答对17题,答错2题,有1题没答。 7、甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒? 分析:“从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米。根据路程、速度和时间的关系,就可求得所需时间。 解:(240+264)÷(20+16) =504÷30 =14(秒) 答:从两车头相遇到两车尾相离,需要14秒。 8、小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远? 分析:在每分走50米的到校时间内按两种速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,这就可求出小明按每分50米的到校时间。 解:60×2÷(60-50)=12(分) 50×12=600(米) 答:小明从家里到学校是600米。 9、有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇? 分析:由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,即可求第一次相遇时经过的时间。 解:600÷(400-300) =600÷100 =6(分) 答:经过6分钟两人第一次相遇 10、有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少? 分析:由“只把宽增加2厘米,面积就增加12平方厘米”,可求出原来的长是:(12÷2)厘米,同理原来的宽就是(8÷2)厘米,求出长和宽,就能求出原来的面积。 解:(12÷2)×(8÷2)=24(平方厘米) 答:这个长方形纸板原来的面积是24平方厘米。 思维训练相关文章: 1. 思维训练 2. 逻辑思维训练500题 3. 逻辑思维训练题目及答案 4. 宝宝逻辑思维训练 5. 自闭症孩子的教育思考:浅谈思维训练
