初一数学上册知识点归纳(初一上学期数学知识点)

数学初一上册知识点汇总

要想学好数学一定要理清书本上的重点知识,接下来给大家分享初一数学上册的重要知识点,供参考! 有理数 1.大于0的数叫做正数。 2.在正数前面加上负号“-”的数叫做负数。 3.整数和分数统称为有理数。 4.人们通常用一条直线上的点表示数,这条直线叫做数轴。 5.在直线上任取一个点表示数0,这个点叫做原点。 6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。 7.由绝对值的定义可知: 一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数; 0的绝对值是0。 8.正数大于0,0大于负数,正数大于负数。 9.两个负数,绝对值大的反而小。 10.有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加。 (2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。 (3)一个数同0相加,仍得这个数。 11.有理数的加法中,两个数相加,交换交换加数的位置,和不变。 12.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。 13.有理数减法法则:减去一个数,等于加上这个数的相反数。 14.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。 15.有理数中仍然有:乘积是1的两个数互为倒数。 16.一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。 17.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。 18.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。 19.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。 20.两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 21.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。 22.根据有理数的乘法法则可以得出: 负数的奇次幂是负数,负数的偶次幂是正数。 显然,正数的任何次幂都是正数,0的任何次幂都是0。 23.做有理数混合运算时,应注意以下运算顺序: (1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行; (3)如有括号,先做括号内的运算,按小括号.中括号.大括号依次进行。 相反数和绝对值 1.相反数:只有符号不同的两个数互为相反数,0的相反数是0。在数轴上位于原点两侧且离原点距离相等。 2.绝对值的几何意义:一个数所对应的点离原点的距离叫做该数的绝对值。 3.绝对值的代数定义:(1)一个正数的绝对值是它本身;(2)一个负数数的绝对值是它的相反数;(3)0的绝对值是0;(4)|a|大于或者等于0。 4.比较两个数的大小关系 在数轴上表示有理数,它们从左到右的顺序,就是从大到小的顺序,即左边的数小于右边的数。由此可知:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小。 平行线 1.在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。 2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 3.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 4.判定两条直线平行的方法: (1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。 (2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。 (3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。 5.平行线的性质 (1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。 (2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。 (3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
数学初一上册知识点汇总

初一上册数学重点知识点归纳

数学学习数学不光有做一些习题,还要注重知识点的总结与归纳。下面,我为大家整理一下初一上册数学重点知识点归纳仅供大家参考。 初一上册数学重点知识点:有理数 (一)正负数 1.正数:大于0的数。 2.负数:小于0的数。 3.0即不是正数也不是负数。 4.正数大于0,负数小于0,正数大于负数。 (二)有理数 1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π) 2.整数:正整数、0、负整数,统称整数。 3.分数:正分数、负分数。 (三)数轴 1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。) 2.数轴的三要素:原点、正方向、单位长度。 3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。 4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。 (四)有理数的加减法 1.先定符号,再算绝对值。 2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。 3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。 4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。 5.a-b=a+(-b)减去一个数,等于加这个数的相反数。 绝对值 (1)绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。(2)正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。?a(a?0)?|a|?0(a?0)??a(a?0)?越来越大或?a(a?0)|a|???a(a?0)-3-2-10123(3)绝对值的性质:①除0外,绝对值为正数的数有两个,它们互为相反数;②互为相反数的两数(除0外)的绝对值相等;即:|a|=|b|,则a+b=0③任何数的绝对值总是非负数,即|a|≥0④对任何有理数a,都有|a|=|-a|5.比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。 以上就是我为大家整理的初一上册数学重点知识点归纳,希望能帮助到大家,更多中考信息请继续关注本站!
初一上册数学重点知识点归纳

初一上册数学知识点归纳整理

数学的学习在于练习,勤加练习能帮助我们打开思维的逻辑,下面是我给大家带来的初一上册数学知识点归纳整理,希望能够帮助到大家! 初一上册数学知识点归纳整理 第一章有理数 (一)正负数 1.正数:大于0的数。 2.负数:小于0的数。 3.0即不是正数也不是负数。 4.正数大于0,负数小于0,正数大于负数。 (二)有理数 1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π) 2.整数:正整数、0、负整数,统称整数。 3.分数:正分数、负分数。 (三)数轴 1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。) 2.数轴的三要素:原点、正方向、单位长度。 3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。 4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。 (四)有理数的加减法 1.先定符号,再算绝对值。 2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。 3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。 4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。 5.a-b=a+(-b)减去一个数,等于加这个数的相反数。 (五)有理数乘法(先定积的符号,再定积的大小) 1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。 2.乘积是1的两个数互为倒数。 3.乘法交换律:ab=ba 4.乘法结合律:(ab)c=a(bc) 5.乘法分配律:a(b+c)=ab+ac (六)有理数除法 1.先将除法化成乘法,然后定符号,最后求结果。 2.除以一个不等于0的数,等于乘这个数的倒数。 3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。 (七)乘方 1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数) 2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。 3.同底数幂相乘,底不变,指数相加。 4.同底数幂相除,底不变,指数相减。 (八)有理数的加减乘除混合运算法则 1.先乘方,再乘除,最后加减。 2.同级运算,从左到右进行。 3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。 (九)科学记数法、近似数、有效数字。 第二章整式(一)整式 1.整式:单项式和多项式的统称叫整式。 2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。 3.系数;一个单项式中,数字因数叫做这个单项式的系数。 4。次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。 5.多项式:几个单项式的和叫做多项式。 6.项:组成多项式的每个单项式叫做多项式的项。 7.常数项:不含字母的项叫做常数项。 8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。 9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。 10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。 (二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。 1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。 2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变 整理了知识点,我们来看看相关的练习题吧。根据做题的情况分析有哪些知识点是自己还没有掌握的。 1,从数轴上看,0是() A,最小整数B,最大的负数C,最小的有理数D最小的非负数 2,一个数的相反数小于它本身,这个数是() A,非负数B,正数C,0D,负数 3,冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,把它们从高到低排列正确的是() A,-10℃,-7℃,1℃B,-7℃,-10℃,1℃C,1℃,-7℃,-10℃D,1℃,-10℃,-7℃ 4,下列说法正确的有() A,正数和负数统称为有理数B,有理数是指整数、分数、正有理数、负有理数和0五类C,一个有理数不是整数就是分数D,整数包括正整数和负整数 5,若a、b为有理数,a>0,b<0,且|a|<|b|,那么下列说法不正确的是() A,若将数a、b在数轴上表示出来,则a在原点右侧,b在原点左侧。 B,因正数大于一切负数,所以a>b。 C,若将数a、b在数轴上表示出来,则数a与原点的距离比较b与原点的距离小。 D,在数轴上,表示a,|a|,b的点从左到右依次为a,b,|a| 6,在下列代数式:(1/2)ab,(a+b)/2,ab2+b+1,(3/x)+(2/y),x3+x2-3中,多项式有()A.2个B.3个C.4个D5个 7,多项式-23m2-n2是()A.二次二项式B.三次二项式C.四次二项式D五次二项式 8,下列说法正确的是() A.3x2―2x+5的项是3x2,2x,5 B.(3/x)-(3/y)与2x2―2xy-5都是多项式 C.多项式-2x2+4xy的次数是3 D一个多项式的次数是6,则这个多项式中只有一项的次数是6 9,下列说法正确的是() A.整式abc没有系数 B.(x/2)+(y/3)+(z/4)不是整式 C.-2不是整式 D.整式2x+1是一次二项式 10,下列代数式中,不是整式的是() A、-3x2 B、(5a-4b)/7 C、(3a+2)/5x D、-2005 参考答案 1——5 DBCCD 6——10 BABDC
初一上册数学知识点归纳整理

初一数学上册知识点梳理

数学在初中学习中是一门十分重要的科目,下面是总结的初一上册的重点数学知识点,供大家参考。 代数 1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式) 2.列代数式的几个注意事项: (1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写; (2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式; (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a。 整式 1.整式:单项式和多项式的统称叫整式。 2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。 3.系数;一个单项式中,数字因数叫做这个单项式的系数。 4.次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。 5.多项式:几个单项式的和叫做多项式。 6.项:组成多项式的每个单项式叫做多项式的项。 等式的性质 等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。 等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。 等式的性质三:等式两边同时乘方(或开方),等式仍然成立。 解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。 一元一次方程 1.定义: 一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。 2.解一元一次方程的步骤 ①去分母:把系数化成整数。 ②去括号 ③移项:把等式一边的某项变号后移到另一边。 ④合并同类项 ⑤系数化为1. 角 1.角:角是由两条有公共端点的射线组成的几何对象。 2.角的度量单位:度、分、秒 3.顶点:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点 4.角的比较: (1)角可以看成是由一条射线绕着他的端点旋转而成的。 (2)平角和周角:一条射线绕着他的端点旋,转当始边和终边成一条直线时,所成的角叫平角。当它又和始边重合的时候,所成的角角周角。平角等于108度,周角等于360度,直角等于90度。 (3)平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 5.余角和补角: (1)余角:如果两个角的和是90度,那么称这两个角“互为余角”,简称“互余”。 性质:等角的余角相等。 (2)补角:如果两个角的和是180度,那么称这两个角“互为补角”,简称“互补”。 性质:等角的补角相等。
初一数学上册知识点梳理

七年级数学上册知识点归纳总结

七年级数学是整个初中数学的基础,一定要好好把握,我整理了一些重要的知识点。 有理数 1、有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b)。 2、加减法统一成加法:有理数的加减法运算可以通过有理数的减法法则将减法转化为加法,统一成只有加法运算的和式。 3、和式的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。 4、加减混合运算的方法和步骤 (1)将减法统一成加法,并写成省略加号的和的形式; (2)运用加法的交换律和结合律,简化运算。 5、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得0。 6、有理数乘法步骤:先确定积的符号;再计算绝对值的积。 7、倒数:乘积是1的两个数互为倒数。 8、有理数的除法法则 (1)除以一个数等于乘以这个数的倒数; (2)两数相除,同号得正,异号得负,并把绝对值相除; (3)0除以任何一个不等于零的数,都得0。 整式 1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数. 单项式指的是数或字母的积的代数式。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。 2、单项式的系数:是指单项式中的数字因数; 3、单项数的次数:是指单项式中所有字母的指数的和。 4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。多项式的次数是指多项式里次数最高项的次数,这是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的性质符号。 5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。 6、单项式和多项式统称为整式。 一元一次方程 1、方程是含有未知数的等式。 2、方程都只含有一个未知数x,未知数x的指数都是1,这样的方程叫做一元一次方程。 注意:判断一个方程是否是一元一次方程要抓住三点: (1)未知数所在的式子是整式(方程是整式方程); (2)化简后方程中只含有一个未知数; (3)经整理后方程中未知数的次数是1。 3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。 4、等式的性质: (1)等式两边同时加(或减)同一个数(或式子),结果仍相等; (2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。 注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数。 以上是我整理的七年级上册数学知识点,希望能帮到你。
七年级数学上册知识点归纳总结