人教版七年级上册数学知识点
知识是嘈杂的,智慧是宁静的。知识总是在卖弄,智慧却深藏不露;知识,只有当它靠积极的思维得来,而不是凭记忆得来的时候,才是真正的知识。下面我给大家分享一些人教版七年级上册数学知识,希望能够帮助大家,欢迎阅读! 人教版七年级上册数学知识1 整式的加减 一、代数式 1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。 2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。 二、整式 1、单项式: (1)由数和字母的乘积组成的代数式叫做单项式。 (2)单项式中的数字因数叫做这个单项式的系数。 (3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。 2、多项式 (1)几个单项式的和,叫做多项式。 (2)每个单项式叫做多项式的项。 (3)不含字母的项叫做常数项。 3、升幂排列与降幂排列 (1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。 (2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。 三、整式的加减 1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。 去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。 2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。 合并同类项: (1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。 (2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。 (3)合并同类项步骤: a.准确的找出同类项。 b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。 c.写出合并后的结果。 (4)在掌握合并同类项时注意: a.如果两个同类项的系数互为相反数,合并同类项后,结果为0. b.不要漏掉不能合并的项。 c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。 说明:合并同类项的关键是正确判断同类项。 3、几个整式相加减的一般步骤: (1)列出代数式:用括号把每个整式括起来,再用加减号连接。 (2)按去括号法则去括号。 (3)合并同类项。 4、代数式求值的一般步骤: (1)代数式化简 (2)代入计算 (3)对于某些特殊的代数式,可采用“整体代入”进行计算。 人教版七年级上册数学知识2 图形的初步认识 一、立体图形与平面图形 1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。 2、长方形、正方形、三角形、圆等都是平面图形。 3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。 二、点和线 1、经过两点有一条直线,并且只有一条直线。 2、两点之间线段最短。 3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。 4、把线段向一方无限延伸所形成的图形叫做射线。 三、角 1、角是由两条有公共端点的射线组成的图形。 2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。 3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。 4、度、分、秒是常用的角的度量单位。 把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。 四、角的比较 从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。 五、余角和补角 1、如果两个角的和等于90(直角),就说这两个角互为余角。 2、如果两个角的和等于180(平角),就说这两个角互为补角。 3、等角的补角相等。 4、等角的余角相等。 六、相交线 1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 2、注意: ⑴垂线是一条直线。 ⑵具有垂直关系的两条直线所成的4个角都是90。 ⑶垂直是相交的特殊情况。 ⑷垂直的记法:a⊥b,AB⊥CD。 3、画已知直线的垂线有无数条。 4、过一点有且只有一条直线与已知直线垂直。 5、连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。 6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。 两条直线相交有4对邻补角。 8、有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。 七、平行线 1、在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。 2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 3、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 4、 判定两条直线平行的方法: (1) 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。 (2) 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。 (3) 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。 5、平行线的性质 (1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。 (2) 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。 (3) 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。 人教版七年级上册数学知识3 式的定义 1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。 2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。 3.多项式:几个单项式的和叫多项式。 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。 5.整式:单项式和多项式统称为整式 2.2整式的加减 1.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。 2.合并同类项法则:系数相加,字母与字母的指数不变。 3.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。 4.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。 5.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。 注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。 人教版七年级上册数学知识4 有理数 1.1、有理数概念: ⑴正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。 ⑵注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数; ⑶注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。 3.相反数: ⑴只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; ⑵注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; 4.绝对值: ⑴正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数; ⑵注意:绝对值的意义是数轴上表示某数的点离开原点的距离; ⑶|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|, 5.有理数比大小: ⑴正数的绝对值越大,这个数越大; ⑵正数永远比0大,负数永远比0小; ⑶正数大于一切负数; ⑷两个负数比大小,绝对值大的反而小; ⑸数轴上的两个数,右边的数总比左边的数大; ⑹大数-小数>0,小数-大数<0。 1.2、有理数运算法则及规律 1.有理数的运算法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数。 2.有理数加法的运算律: (1)加法的交换律:a+b=b+a; (2)加法的结合律:(a+b)+c=a+(b+c)。 3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。 4.有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。 5.有理数乘法的运算律: (1)乘法的交换律:ab=ba; (2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac。 6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。 7.有理数乘方的法则:正数的任何次幂都是正数; 1.3、乘方的定义 1.求相同因式积的运算,叫做乘方; 2.乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 3.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。 4.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。 5.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则。 6.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明。 人教版七年级上册数学知识5 一元一次方程 3.1、解一元一次方程 1.等式与等量:用“=”号连接而成的式子叫等式。注意:“等量就能代入”! 2.等式的性质: 等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。 3.方程:含未知数的等式,叫方程。 4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”! 5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1。 6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。 7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。 8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0)。 9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解)。 3.2、一元一次方程应用题 1.读题分析法——多用于“和,差,倍,分问题” 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。 2.画图分析法——多用于“行程问题” 利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。 人教版七年级上册数学知识点相关文章: ★初一人教版数学上册知识点总结归纳 ★2019秋人教版七年级数学上册教材全解读 ★七年级数学知识点大全 ★人教版七年级数学上册学习方法 ★人教版七年级数学上册教案 ★新人教版七年级数学上册教学计划 ★人教版一年级数学上册知识点 ★新人教版七年级上册数学教学计划 ★人教版八年级数学上册知识点总结 ★人教版七年级上册数学教学工作计划

七年级上册数学概念是什么?
七年级上册数学概念是如下: 1、第一章:有理数。 2、第二章:整式的加减。 3、第三章:一元一次方程。 4、第四章:图形认识初步。 5、第五章:相交线与平分线。 6、第六章:平面直角座标系。 7、第七章:三角形。 8、第八章:二元一次方程组。 9、第九章:不等式与不等式组。 10、第十章:资料的收集、整理与描述。

七年级数学上册知识点总结第二章
勤奋至关重要!只有勤奋学习,才能成就美好人生!勤奋出天才,这是一面永不褪色的旗帜,它永远激励我们不断追求不断探索。下面给大家分享一些关于七年级数学上册知识点总结第二章,希望对大家有所帮助。 整式的加减 一.用字母表示数(代数初步知识) 1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式;用基本运算符号把数和字母连接而成的式子叫做代数式,如n,-1,2n+500,abc。 2. 代数式书写规范: (1)数与字母相乘,或字母与字母相乘中通常使用“· ” 乘,或省略不写; (2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式; (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a . 出现除式时,用分数表示; (7)若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。 3.几个重要的代数式:(m、n表示整数) (1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ; (2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c; (3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数可以是:2n ,奇数可以是:2n+1;三个连续整数可以是: n-1、n、n+1 ; (4)若b>0,若正数是:a2+b ,负数是: -a2-b ,非负数可以是: a2 ,非正数可以是:-a2 . 二.整式 1.单项式:表示数与字母的乘积的代数式叫单项式。单独的一个数或一个字母也是代数式。 2.单项式的系数:单项式中的数字因数;单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数; 3.单项式的次数:一个单项式中,所有字母的指数和 4多项式:几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。 多项式里次数最高项的次数,叫做这个多项式的次数。常数项的次数为0。 注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式. 5整式:单项式和多项式统称为整式,即凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式. 整式分类为: . 注意:分母上含有字母的不是整式。 6.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列. 三.整式的加减 1.合并同类项 2同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。 3合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。 4合并同类项的步骤:(1)准确的找出同类项;(2)运用加法交换律,把同类项交换位置后结合在一起;(3)利用法则,把同类项的系数相加,字母和字母的指数不变;(4)写出合并后的结果。 5去括号 去括号的法则: (1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变; (2)括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项的符号都要改变。 6添括号法则:添括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号. 7整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项;整式的加减,实际上是在去括号的基础上,把多项式的同类项合并. 8整式加减的步骤:(1)列出代数式;(2)去括号;(3)添括号(4)合并同类项。 七年级数学上册知识点总结第二章相关文章: ★初一数学上册知识点归纳 ★初一数学上册第二章的总结手抄报 ★初一上册数学知识点归纳整理 ★初一数学上册知识要点 ★数学初一第二章整式的加减 ★初一数学上册知识点总结 ★七年级上册数学知识点总结三篇 ★初一数学上册重点知识整理 ★七年级上册数学全册概念总结复习 ★初中七年级数学知识点归纳整理

七年级上册数学书内容有哪些?
七年级上册数学书重要内容: (一)有理数。 (1)定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。 (2)数轴:在数学中,可以用一条直线上的点表示数,这条直线 叫做数轴。 (3)相反数:相反数是一个数学术语,指值相等,正负号相反的两个数互为相反数。 (4)值:值是指一个数在数轴上所对应点到原点的距离。正数的值是它本身,负数的值是它的相反数;0的值是0,两个负数,值大的反而小。 (5)有理数的加减法。 同号相加,到相同符号,并把值相加。异号相加,取值大的加数的符号,并用较大的值减去较小的值。 (6)有理数的乘法。 两数相乘,同号得正,异号得负,并把值相乘。 任何数与0相乘,积为0. 例:0×1=0 (7)有理数的除法。除以一个不为0的数,等于乘这个数的倒数。 两数相除,同号得正,异号得负,并把值相除。0除 以任何一个不为0的数,都得0。 (8)有理数的乘方。求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当a?看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。 (二)整式 (1)整式:是单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。 ①单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。 ②多项式:由若干个单项式相加组成的代数式叫做多项式。 ③系数:单项式中所有字母的指数的和叫做它的次数。 ④次数:一个单项式中,所有变数字母的指数之和,叫做这个单项式的次数。 ⑤项:组成多项式的每个单项式叫做多项式的项。 ⑥多项式的次数:多项式中,次数比较高的项的次数叫做这个多项式的次数。 ⑦同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。 ⑧合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。 (2)整式加减。 整式的加减运算时,如果遇到括号先去掉括号,再合并同类项。 (三)一元一次方程 (1)定义: 一元一次方程指只含有一个未知数、未知数的比较高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。 (2)解一元一次方程的步骤: ①去分母:把系数化成整数。 ②去括号。 ③移项:把等式一边的某项变号后移到另一边。 ④合并同类项。 ⑤系数化为1。 (四)几何图形。 (1)几何图形。 将从实物中抽象出的各种图形统称为几何图形。几何图形分为立体图形和平面图形。 (2)立体图形。 立体图形是各部分不在同一平面内的几何图形,由一个或多个面围成的可以存在于现实生活中的三维图形。点动成线,线动成面,面动成体。 分类:柱体、锥体、旋转体、截面体等。 (3)平面图形。 平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形、平形四边形等都是基本的平面图形。 分类:圆形、多边形、弓形、多弧形。 (4)点、线、面、体。 点:点是比较简单的形,是几何图形比较基本的组成部分。点是空间中只有位置,没有大小的图形。 线:线是由个点集合成的图形。 面:在空间中,到两点距离相同的点的轨迹。 体:多面体是指四个或四个以上多边形所围成的立体。 (5)直线、射线、线段。 直线:直线由个点构成。没有端点,向两端无限延长,长度无法度量。直线是轴对称图形。 射线:是指由线段的一端无限延长所形成的直的线,射线有且仅有一个端点,无法测量长度。 线段:是指直线上两点间的有限部分(包括两个端点) ,有别于直线、射线。 (6)角:在几何学中,角是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。 (7)余角:两角之和为90°则两角互为余角,等角的余角相等。 (8)补角:两角之和为180°则两角互为补角,等角的补角相等。 《七年级数学》是2010年龙门书局出版的图书,主编是洪林旺。本书收录了全国各省高考状元的各个学科的学习心得和方法技巧。 数学课本(mathematics textbook),数学学科教学用书。小学数学课本注意在加强基础知识教学的同时,培养学生的计算能力、初步的逻辑思维能力和空间观念,以及解决简单实际问题的能力。中学数学课本包括代数、平面几何、立体几何等内容。

七年级上册数学书内容汇总
为了方便大家更好的学习和复习七年级上册数学课本内容,现将七年级上册数学书重要内容整理分享出来。 七年级上册数学书重要内容 (一)有理数 (1)定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。 (2)数轴:在数学中,可以用一条直线上的点表示数,这条直线 叫做数轴。 (3)相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。 (4)绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。 (5)有理数的加减法 同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。 (6)有理数的乘法 两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数与0相乘,积为0. 例:0×1=0 (7)有理数的除法 除以一个不为0的数,等于乘这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。0除 以任何一个不为0的数,都得0。 (8)有理数的乘方 求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当a?看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。 (二)整式 (1)整式:是单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。 ①单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。 ②多项式:由若干个单项式相加组成的代数式叫做多项式。 ③系数:单项式中所有字母的指数的和叫做它的次数。 ④次数:一个单项式中,所有变数字母的指数之和,叫做这个单项式的次数。 ⑤项:组成多项式的每个单项式叫做多项式的项。 ⑥多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。 ⑦同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。 ⑧合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。 (2)整式加减 整式的加减运算时,如果遇到括号先去掉括号,再合并同类项。 (三)一元一次方程 (1)定义: 一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。 (2)解一元一次方程的步骤 ①去分母:把系数化成整数。 ②去括号 ③移项:把等式一边的某项变号后移到另一边。 ④合并同类项 ⑤系数化为1. (四)几何图形 (1)几何图形 将从实物中抽象出的各种图形统称为几何图形。几何图形分为立体图形和平面图形。 (2)立体图形 立体图形是各部分不在同一平面内的几何图形,由一个或多个面围成的可以存在于现实生活中的三维图形。点动成线,线动成面,面动成体。 分类:柱体、锥体、旋转体、截面体等。 (3)平面图形 平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形、平形四边形等都是基本的平面图形。 分类:圆形、多边形、弓形、多弧形。 (4)点、线、面、体 点:点是最简单的形,是几何图形最基本的组成部分。点是空间中只有位置,没有大小的图形。 线:线是由无数个点集合成的图形。 面:在空间中,到两点距离相同的点的轨迹。 体:多面体是指四个或四个以上多边形所围成的立体。 (5)直线、射线、线段 直线:直线由无数个点构成。没有端点,向两端无限延长,长度无法度量。直线是轴对称图形。 射线:是指由线段的一端无限延长所形成的直的线,射线有且仅有一个端点,无法测量长度。 线段:是指直线上两点间的有限部分(包括两个端点) ,有别于直线、射线。 (6)角:在几何学中,角是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。 (7)余角:两角之和为90°则两角互为余角,等角的余角相等。 (8)补角:两角之和为180°则两角互为补角,等角的补角相等。
