趣味数学小知识 数学小知识有哪些
1、早在2000多年前,我们的祖先就用磁石制作了指示方向的仪器,这种仪器就是司南。 2、最早使用小圆点作为小数点的是德国的数学家,叫克拉维斯。 4、“七巧板”是我国古代的一种拼板玩具,由七块可以拼成一个大正方形的薄板组成,拼出来的图案变化万千,后来传到国外叫做唐图。 5、传说早在四千五百年前,我们的祖先就用刻漏来计时。 6、中国是最早使用四舍五入法进行计算的国家。 7、欧几里得最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展为欧几里得几何,被广泛的认为是历史上最成功的教科书。 8、中国南北朝时代南朝数学家、天文学家、物理学家祖冲之把圆周率数值推算到了第7位数。 9、荷兰数学家卢道夫把圆周率推算到了第35位。 10、有“力学之父”美称的阿基米德流传于世的数学著作有10余种,阿基米德曾说过:给我一个支点,我可以翘起地球。这句话告诉我们:要有勇气去寻找这个支点,要用于寻找真理。

初中数学知识趣味记忆口诀
数学虽然是理科,但是要记忆的知识点是比较多,这也需要好的记忆方法或记忆口诀。下面是由我给大家带来关于初中数学知识趣味记忆口诀,希望对大家有帮助! 初中数学知识记忆口诀一、数与代数 Ⅰ、数与式 1.有理数的加法、乘法运算 同号相加一边倒,异号相加“大”减“小”;符号跟着大的跑,绝对值相等“零”正好。 同号得正异号负,一项为零积是零。【注】“大”减“小”是指绝对值的大小。 2.合并同类项 合并同类项,法则不能忘;只求系数代数和,字母、指数不变样。 3.去、添括号法则 去括号、添括号,关键看符号;括号前面是正号,去、添括号不变号; 括号前面是负号,去、添括号都变号。 4.单项式运算 加、减、乘、除、乘(开)方,三级运算分得清;系数进行同级(运)算,指数运算降级(进)行。 5.分式混合运算法则 分式四则运算,顺序乘除加减;乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先;分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难; 变号必须两处,结果要求最简。 6.平方差公式 两数和乘两数差,等于两数平方差;积化和差变两项,完全平方不是它。 7.完全平方公式 首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。 8.因式分解 一提二套三分组,十字相乘也上数;四种方法都不行,拆项添项去重组;重组无望试求根, 换元或者算余数;多种方法灵活选,连乘结果是基础;同式相乘若出现,乘方表示要记住。 【注】一提(提公因式)二套(套公式) 9.二次三项式的因式分解 先想完全平方式,十字相乘是其次;两种方法行不通,求根分解去尝试。 10.比和比例 两数相除也叫比,两比相等叫比例;基本性质第一条,外项积等内项积; 前后项和比后项,组成比例叫合比;前后项差比后项,组成比例是分比; 两项和比两项差,比值相等合分比;前项和比后项和,比值不变叫等比; 商定变量成正比,积定变量成反比;判断四数成比例,两端积等中间积。 11.根式和无理式 表示方根代数式,都可称其为根式;根式异于无理式,被开方式无限制; 无理式都是根式,区分它们有标志;被开方式有字母,才能称为无理式。 12.最简根式的条件 最简根式三条件:号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。 Ⅱ、方程与不等式 1.解一元一次方程 已知未知闹分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。 先去分母再括号,移项合并同类项;系数化1还没好,回代值等才算了。 2.解一元一次不等式 去分母、去括号,移项时候要变号;同类项、合并好,再把系数来除掉; 两边除(以)负数时,不等号改向别忘了。 3.解一元一次绝对值不等式 大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。 4.解一元一次不等式组 大大取较大,小小取较小;大小、小大取中间,大大,小小无处找。 5.解分式方程 同乘最简公分母,化成整式写清楚;求得解后须验根,原(根)留、增(根)舍别含糊。 6.解一元二次方程 方程没有一次项,直接开方最理想;如果缺少常数项,因式分解没商量; b、c相等都为零,等根是零不要忘;b、c同时不为零,因式分解或配方; 也可直接套公式,因题而异择良方。 7.解一元二次不等式 首先化成一般式,构造函数第二站;判别式值若非负,曲线横轴有交点; a正开口它向上,大于零则取两边;代数式若小于零,解集交点数之间; 方程若无实数根,口上大零解为全;小于零将没有解,开口向下正相反。 Ⅲ、函数 1.坐标系上坐标点 坐标平面点(x,y),横在前来纵在后;X轴上y为0,x为0在Y轴。 象限角的平分线,坐标特征有特点;一、三横纵都相等,二、四横纵恰相反。 平行某轴的直线,点的坐标有讲究;平行于X轴,纵等横不同;平行于Y轴,横等纵不同。 对称点坐标要记牢,相反位置莫混淆;X轴对称y相反,Y轴对称X反;原点对称最好记,横纵坐标变符号。 2.函数自变量的取值 分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。 3.判断正比例函数: 判断正比例函数,检验当分两步走;一量表示另一量,是与否;若有还要看取值,全体实数都要有。 4.正比例函数()图像与性质 正比函数很简单,经过原点一直线;K正一三负二四,变化趋势记心间; K正左低右边高,同大同小向爬山;K负左高右边低,一大另小下山峦。 5.反比例函数()图像与性质 反比函数双曲线,所有都不过原点;K正一三负二四,两轴是它渐近线; K正左高右边低,一三象限滑下山;K负左低右边高,二四象限如爬山。 6.一次函数()图像与性质 一次函数是直线,图像经过仨象限;两个系数k与b,作用之大莫小看; k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反; k是斜率定夹角,b与Y轴来相见;k的绝对值越大,线离横轴就越远。 7.一次函数()图像与性质 二次方程零换y,二次函数便出现;全体实数定义域,图像叫做抛物线; 抛物线有对称轴,两边单调正相反;开口、顶点和交点,它们确定图象现; 开口、大小由a断,c与Y轴来相见;b的符号较特别,符号与a相关联; 顶点非高即最低。上低下高很显眼,如果要画抛物线,平移也可去描点; 提取配方定顶点,两条途径再挑选,若要平移也不难,先画基础抛物线, 列表描点后连线,平移规律记心间,左加右减括号内,号外上加下要减。 8.三角函数 三角函数的增减性:正增余减。 特殊三角函数值(30度、45度、60度)记忆:正弦(值)、余弦(值)分母2、正切(值)、余切(值)分母3。 二、空间与图形 Ⅰ、线与角 1.直线、射线与线段 直线射线与线段,形状相似有关联;直线长短不确定,可向两方无限延; 射线仅有一端点,反向延长成直线;线段定长两端点,双向延伸变直线。 两点定线是共性,组成图形最常见。 2.角 一点出发两射线,组成图形叫做角;共线反向是平角,平角之半叫直角; 平角两倍成周角,小于直角叫锐角;直平之间是钝角,平周之间叫优角; 和为直角叫互余,和为平角叫互补。 3.两点间距离公式 同轴两点求距离,大减小数就为之;与轴等距两个点,间距求法亦如此; 平面任意两个点,横纵标差先求值;差方相加开平方,距离公式要牢记。 Ⅱ、平面图形 1.平行四边形的判定 要证平行四边形,两个条件才能行;一证对边都相等,或证对边都平行; 一组对边也可以,必须相等且平行; 对角线,是个宝,互相平分“跑不了”;对角相等也有用,“两组对角”才能成。 2.矩形的判定 任意一个四边形,三个直角成矩形;对角线等互平分,四边形它是矩形。 已知平行四边形,一个直角叫矩形;两对角线若相等,理所当然为矩形。 3.菱形的判定 任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形; 已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形。 4.梯形的辅助线 移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现; 延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前; 已知腰上一中线,莫忘作出中位线。 5.三角形的辅助线 题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连; 三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。 6.圆内的正多边形 份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前. 7.圆中比例线段 遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替; 遇等比,改等积,引用射影和圆幂;平行线,转比例,两端各自找联系。初中数学几何面积8个速背口诀求几何图形的面积有“三板斧” (1)直接用三角形,特殊四边形,圆,扇形的面积公式来求。 (2)间接割补法,把不规则图形面积通过割补、运动、变形转化为规则易求图形面积的和或差。 (3)特殊求法,即利用相似图形的面积比等于相似比的平方,等底(等高)的三角形面积比等于高(底)比的性质来解。 其次有些乘法公式、勾股定理、三角形的一边平行四边形的比例式等性质,也可用面积法来推导。 面积法是什么? 运用面积关系解决平面几何体的方法,称为面积法。 它是几何中常用的一种方法。特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系会变成数量之间的关系。这个时候,问题就化繁为简了,只需要计算,有事甚至可以不添置补助线就迎刃而解了! 此外,用面积法还可以用来求线段长,证明线段相等(不等),角相等,比例式或等积式,求线段比等。虽然这些几乎都可以用其他方法来解决,但是面积法无疑是一种更直接、简易、有效的方法。 面积法的常用理论口诀 1.三角形的中线把三角形分成两个面积相等的部分。 2.同底同高或等底等高的两个三角形面积相等。 3.平行四边形的对角线把其分成两个面积相等的部分。 4.同底(等底)的两个三角形面积的比等于高的比。 同高(或等高)的两个三角形面积的比等于底的比。 5.三角形的面积等于等底等高的平行四边形的面积的一半。 6.三角形的中位线截三角形所得的三角形的面积等于原三角形面积的1/4 7.三角形三边中点的连线所成的三角形的面积等于原三角形面积的1/4 8.有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。 面积法的常用解题思路 1.分解法:通常把一个复杂的图形,分解成几个三角形。 2.作平行线法:通过平行线找出同高(或等高)的三角形。 3.利用有关性质法:比如利用中点、中位线等的性质。 4.还可以利用面积解决其它问题。 猜你喜欢: 1. 趣味智力题|数学智力题 2. 2016初中数学知识点总结大全 3. 数学知识要如何记 4. 数学知识的快速记忆方法 5. 初中语文记忆法口诀 6. 人教版初中数学知识点汇总中考复习资料

短小的趣味数学故事
趣味数学故事集数学知识教育、数学兴趣教育和数学应用教育于一体,具有独特的教学价值与意义。接下来我为你整理了短小的趣味数学故事,一起来看看吧。 短小的趣味数学故事(一)孙悟空巧解比例 话说唐僧和三个徒弟为普渡众生去西天取经,要经历九九八十一难,困难重重,关卡层层,是常人很难办到的。师徒四人走了一天,觉得累了,便休息一下。八戒把钉耙一丢,倒地便睡,唐僧与沙僧打坐,悟空舞动金箍棒。 只见悟空一声“变”,金箍棒由原来的“绣花针”变成了高耸入云的“大柱子”。悟空叫道:“八戒,你猜我的金箍棒现在有多长?”八戒懒懒地说:“能有多长,不过10米罢了。”悟空说:“俺这金箍棒可神了,5秒能变10米。”“那25秒能变15米”的八戒随口说道。沙僧说:“这肯定算错了,5秒比10米小,25秒比15米大……”八戒说:“扯淡,这个理由一点也不充分。”悟空说:“那我就说说理由,让你们心服口服。”八戒说:“愿闻其详。”悟空说:“用解比例的方法,设25秒能变x米,比例是5:10=25:x,5x=250,x=50,答案应该是50米啊!”“这……这……”八戒哑口无言,“还有一种方法”,沙僧补充道:“5秒能变10米,10÷5=2米,意思是1秒能变2米长,25秒就能变25×2=50米长。”八戒如醍醐灌顶,连连称是。 唐僧在一旁听着,说道:“你们都很聪明,用不同的方法解开了这道题。凡事要深思熟虑,八戒,你以后可不能瞎掰了,要用理由说明问题。” “一定,一定,徒儿谨记师父教诲,今后要学好数学……”哈哈哈,师徒四人伴着笑声又启程了。 短小的趣味数学故事(二)两个统计小故事 这两个故事都发生在二战期间,并且都是盟军方面机智的统计学家,数学在二战期间充当了十分重要的角色,今天说的是统计。 第一个故事发生在英国,二战前期德国势头很猛,英国从敦刻尔克撤回到本岛,德国每天不定期地对英国狂轰乱炸,后来英国空军发展起来,双方空战不断。 为了能够提高飞机的防护能力,英国的飞机设计师们决定给飞机增加护甲,但是设计师们并不清楚应该在什么地方增加护甲,于是求助于统计学家。统计学家将每架中弹之后仍然安全返航的飞机的中弹部位描绘在一张图上,然后将所有中弹飞机的图都叠放在一起,这样就形成了浓密不同的弹孔分布。工作完成了,然后统计学家很肯定地说没有弹孔的地方就是应该增加护甲的地方,因为这个部位中弹的飞机都没能幸免于难。 第二个故事与德国坦克有关。我们知道德国的坦克战在二战前期占了很多便宜,直到后来,苏联的坦克才能和德国坦克一拼高下,坦克数量作为德军的主要作战力量的数据是盟军非常希望获得的情报,有很多盟军特工的任务就是窃取德军坦克总量情报。然而根据战后所获得的数据,真正可靠的情报不是来源于盟军特工,而是统计学家。 统计学家做了什么事情呢?这和德军制造坦克的惯例有关,德军坦克在出厂之后按生产的先后顺序编号,1,2,…,N,这是一个十分古板的传统,正是因为这个传统,德军送给了盟军统计学家需要的数据。盟军在战争中缴获了德军的一些坦克并且获取了这些坦克的编号,现在统计学家需要在这些编号的基础上估计N,也就是德军的坦克总量,而这通过一定的统计工具就可以实现。 看过这两个故事,同学们是不是对统计有了更大的兴趣? 短小的趣味数学故事(三)巧查脚印破命案 巴黎郊外有一座中世纪留下的古老城堡,其年代几乎与著名的“巴黎圣母院”同样久远,因而成了旅游观光的胜地,吸引了来自世界各地的游客。下面这则故事就是出自—位导游之口。 古堡的顶层有一座尘封的钟楼,里面住着一个怪人,唯一的对外通道是个走起来嘎嘎响、陡峭异常的木质楼梯,大约有几十级,但肯定不到一百级。 某日黄昏,怪人的四位互不相识的朋友阿列克赛、巴顿、克林、杜邦,几乎在同一时间先后来访。他们发现怪人已经被人杀害了,房间里面看起来很恐怖。当下四人大惊失色,争先恐后地拼命逃走。从脏乱不堪的狭窄楼梯(一次只能通过一人)跑下来,阿列克赛一步下2级台阶,巴顿一步下3级台阶,克林一步下4级台阶,而杜邦的本事最大,竟然一步能下5级台阶。 出事以后,侠盗亚森罗宾乔装成一名体面的上流社会绅士,自告奋勇地前来侦破此案。他发现,同时印下四个人脚印的台阶仅在最高处和最低处。 为了追查凶手,脚印混乱了就不好办,于是亚森罗宾特别重视只留有一个人脚印的台阶。后来的结果充分证明他的看法是正确无误的,最后终于抓获凶手,把他绳之以法。

求数学趣味小知识
抽屉原理的应用 1947年,匈牙利数学家把这一原理引进到中学生数学竞赛中,当年匈牙利全国数学竞赛有一道这样的试题:“证明在任何六个人中,一定可以找到三个互相认识的人,或者三个互不认识的人。” 这个问题乍看起来,似乎令人匪夷所思。但如果你懂得抽屉原理,要证明这个问题是十分简单的。我们用A、B、C、D、E、F代表六个人,从中随便找一个,例如A吧,把其余五个人放到“与A认识”和“与A不认识”两个“抽屉”里去,根据抽屉原理,至少有一个抽屉里有三个人。不妨假定在“与A认识”的抽屉里有三个人,他们是B、C、D。如果B、C、D三人互不认识,那么我们就找到了三个互不认识的人;如果B、C、D三人中有两个互相认识,例如B与C认识,那么,A、B、C就是三个互相认识的人。不管哪种情况,本题的结论都是成立的。 由于这个试题的形式新颖,解法巧妙,很快就在全世界广泛流传,使不少人知道了这一原理。其实,抽屉原理不仅在数学中有用,在现实生活中也到处在起作用,如招生录取、就业安排、资源分配、职称评定等等,都不难看到抽屉原理的作用。 兔同笼你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗? 解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。 这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。 普乔柯趣题普乔柯是原苏联著名的数学家。1951年写成《小学数学教学法》一书。这本书中有下面一道有趣的题。 商店里三天共卖出1026米布。第二天卖出的是第一天的2倍;第三天卖出的是第二天的3倍。求三天各卖出多少米布? 这道题可以这样想:把第一天卖出布的米数看作1份。就可以画出下面的线段图: 第一天为1份;第二天为第一天的2倍;第三天为第二天的3倍,也就是第一天的2×3倍。 列综合算式可求出第一天卖布的米数: 1026÷(l+2+6)=1026÷9=114(米) 而114×2=228(米) 228×3=684(米) 所以三天卖的布分别是:114米、228米、684米。 请你接这种方法做一道题。 有四人捐款救灾。乙捐款为甲的2倍,丙捐款为乙的3倍,丁捐款为丙的4倍。他们共捐款132元。求四人各捐款多少元? 鬼谷算我国汉代有位大将,名叫韩信。他每次集合部队,只要求部下先后按l~3、1~5、1~7报数,然后再报告一下各队每次报数的余数,他就知道到了多少人。他的这种巧妙算法,人们称为鬼谷算,也叫隔墙算,或称为韩信点兵,外国人还称它为“中国剩余定理”。到了明代,数学家程大位用诗歌概括了这一算法,他写道: 三人同行七十稀,五树梅花廿一枝, 七子团圆月正半,除百零五便得知。 这首诗的意思是:用3除所得的余数乘上70,加上用5除所得余数乘以21,再加上用7除所得的余数乘上15,结果大于105就减去105的倍数,这样就知道所求的数了。 比如,一篮鸡蛋,三个三个地数余1,五个五个地数余2,七个七个地数余3,篮子里有鸡蛋一定是52个。算式是: 1×70+2×21+3×15=157 157-105=52(个) 请你根据这一算法计算下面的题目。 新华小学订了若干张《中国少年报》,如果三张三张地数,余数为1张;五张五张地数,余数为2张;七张七张地数,余数为2张。新华小学订了多少张《中国少年报》呢? 是要这些么?
◆“0” 罗马数字没有0;五世纪时,“0”从东方传到罗马,当时教皇非常保守,认为罗马数字可以用来记任何数目,已足够用,就禁止用“0”,一位罗马学者的手册介绍了0和0的一些用法,教皇发现后,对它施以酷刑。◆以“规”、“矩”度天下之方圆山东省嘉祥县一座古建筑石室造像中,有两位古代神化中我们远古祖先的形象,一位是伏羲,一位是女娲。伏羲手中物体就是规,与圆规相似;女娲手中物体叫矩,呈直角拐尺形。 有两个供你选择~
在数学城电子计算器展销中心,售货员熟练地操作着各种型号的电子计算器,计算着各种问题。观看的人不时发出一阵阵赞扬声,算得多快多准呀。人群中不少小学生拉着自己的爸爸妈妈,吵着要买电子计算器。有了它,做起数学题该多好呀! “不!”忽然,一个身材奇特的小矮人跳上了柜台,摇着手,对小学生说:“小朋友不宜用这样的东西,要从小培养自己的计算能力,学会简便算法。有了好算法,有时候算起来比计算器还快呢。”大家一齐把目光集中在小矮人身上,仔细一看,原来是外号叫“半截儿”的小“5”。“什么?你能比我的计算器算得还快?”售货员奇怪地问。小“5”说:“你不信,我们试试。”说着,小“5”对大家说:“你们随便报一个数,求这个数乘以5的积,售货员请用电子计算器也一道算,看谁快?”“好!”大家一齐喊道。观看的人群中有人先报了个算式“246×5”。“1230”小“5”脱口而出。“314×5、289×5……”“1570、1445……”小“5”一口气报了出来。售货员还未来得及操作完,得数就被小“5”说出来了。“好啊!”大家热烈地鼓起掌来。小“5”笑着说:“这叫做‘添零折半法’,因为5是10的一半,一个数乘以5,只要把这个数扩大10倍,再折半就行了。比如,246×5=2460÷2=1230。”“我们再来比一比。”售货员不服气地说。“好,我们来计算任一个末位数是5的两位数的平方。”小“5”说。 “等于3025。”小“5”真快,一下子又报出了得数。 这时候,连售货员也佩服小“5”神速的口算能力了。小“5”说道:“任一个末位数是5的两位数的平方,只要把它的十位数字乘上比它大1的数,再在积的后面添上25,就是结果了。例如752=5625,56就是7和8相乘的结果。“哈哈,这样算快极了。” “半截儿,真正灵,敢同计算器比本领;方法妙,快又准,数学城里大明星。”不知是谁编了几句顺口溜,把大家都逗乐了
九九歌 九九歌就是我们现在使用的乘法口诀。远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从"九九八十一"起到"二二如四"止,共36句。因为是从"九九八十一"开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到"一一如一"。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从"一一如一"起到"九九八十一"止。现在我国使用的乘法口诀有两种,一种是45句的,通常称为"小九九";还有一种是81句的,通常称为"大九九"。 阿拉伯数字 在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗? 这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做"阿拉伯数字",因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。 现在,阿拉伯数字已成了全世界通用的数字符
◆“0” 罗马数字没有0;五世纪时,“0”从东方传到罗马,当时教皇非常保守,认为罗马数字可以用来记任何数目,已足够用,就禁止用“0”,一位罗马学者的手册介绍了0和0的一些用法,教皇发现后,对它施以酷刑。◆以“规”、“矩”度天下之方圆山东省嘉祥县一座古建筑石室造像中,有两位古代神化中我们远古祖先的形象,一位是伏羲,一位是女娲。伏羲手中物体就是规,与圆规相似;女娲手中物体叫矩,呈直角拐尺形。 有两个供你选择~
在数学城电子计算器展销中心,售货员熟练地操作着各种型号的电子计算器,计算着各种问题。观看的人不时发出一阵阵赞扬声,算得多快多准呀。人群中不少小学生拉着自己的爸爸妈妈,吵着要买电子计算器。有了它,做起数学题该多好呀! “不!”忽然,一个身材奇特的小矮人跳上了柜台,摇着手,对小学生说:“小朋友不宜用这样的东西,要从小培养自己的计算能力,学会简便算法。有了好算法,有时候算起来比计算器还快呢。”大家一齐把目光集中在小矮人身上,仔细一看,原来是外号叫“半截儿”的小“5”。“什么?你能比我的计算器算得还快?”售货员奇怪地问。小“5”说:“你不信,我们试试。”说着,小“5”对大家说:“你们随便报一个数,求这个数乘以5的积,售货员请用电子计算器也一道算,看谁快?”“好!”大家一齐喊道。观看的人群中有人先报了个算式“246×5”。“1230”小“5”脱口而出。“314×5、289×5……”“1570、1445……”小“5”一口气报了出来。售货员还未来得及操作完,得数就被小“5”说出来了。“好啊!”大家热烈地鼓起掌来。小“5”笑着说:“这叫做‘添零折半法’,因为5是10的一半,一个数乘以5,只要把这个数扩大10倍,再折半就行了。比如,246×5=2460÷2=1230。”“我们再来比一比。”售货员不服气地说。“好,我们来计算任一个末位数是5的两位数的平方。”小“5”说。 “等于3025。”小“5”真快,一下子又报出了得数。 这时候,连售货员也佩服小“5”神速的口算能力了。小“5”说道:“任一个末位数是5的两位数的平方,只要把它的十位数字乘上比它大1的数,再在积的后面添上25,就是结果了。例如752=5625,56就是7和8相乘的结果。“哈哈,这样算快极了。” “半截儿,真正灵,敢同计算器比本领;方法妙,快又准,数学城里大明星。”不知是谁编了几句顺口溜,把大家都逗乐了
九九歌 九九歌就是我们现在使用的乘法口诀。远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从"九九八十一"起到"二二如四"止,共36句。因为是从"九九八十一"开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到"一一如一"。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从"一一如一"起到"九九八十一"止。现在我国使用的乘法口诀有两种,一种是45句的,通常称为"小九九";还有一种是81句的,通常称为"大九九"。 阿拉伯数字 在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗? 这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做"阿拉伯数字",因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。 现在,阿拉伯数字已成了全世界通用的数字符

有趣的数学科普小知识有哪些?
有趣的数学科普小知识如下:一、阿拉伯数字阿拉伯数字是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”。因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。二、九九歌九九歌就是我们现在使用的乘法口诀。远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二如四”止,共36句。因为是从“九九八十一”开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到“一一如一”。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一如一”起到“九九八十一”止。现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。三、莫比乌斯环莫比乌斯环是一种拓扑学结构,它只有一个面和一个边界。可以用一根纸条扭转成180度后,两头再粘接起来,就形成了莫比乌斯环。莫比乌斯环沿着中线剪开,第一次,可以得到一个更大的环;第二次及以后,每次都会得到两个互相嵌套的环。中间永远不会断开,这也是莫比乌斯环的神奇之处。四、克莱因瓶在1882年,著名数学家菲利克斯·克莱因发现了后来以他的名字命名的著名“瓶子”:克莱因瓶。克莱因瓶就像是一个瓶子,但是它没有瓶底,它的瓶颈被拉长,然后似乎是穿过了瓶壁,最后瓶颈和瓶底圈连在了一起。有趣的是,如果把克莱因瓶沿着它的对称线切下去,竟会得到两个莫比乌斯环。五、黄金分割黄金分割提出者是毕达哥拉斯。有一次,毕达哥拉斯路过铁匠作坊,被叮叮当当的打铁声迷住了。为了揭开这些声音的秘密,他测量了铁锤和铁砧的尺寸,发现它们存在着十分和谐的比例关系。回家后,他取出一根线,分为两段,反复比较,最后认定1:0.618的比例最为优美。这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。
